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Stability of Hagen-Poiseuille flow with superimposed 
rigid rotation 
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The linear stability of Hagen-Poiseuille flow (Poiseuille pipe flow) with super- 
imposed rigid rotation against small three-dimensional disturbances is examined 
at finite and infinite axial Reynolds numbers. The neutral curve, which is 
obtained by numerical solution of the system of perturbation equations (derived 
from the Navier-Stokes equations), has been confirmed for finite axial Reynolds 
numbers by a few simple experiments. The results suggest that, at high axial 
Reynolds numbers, the amount of rotation required for destabilization could be 
small enough to have escaped notice in experiments on the transition to turbu- 
lence in (nominally) non-rotating pipe flow. 

1. Introduction 
In  his historic experiments Reynolds (1883) found that the onset of turbulence 

in pipe flow depends only on the ratio W, R/v (where W, is the maximum velocity, 
R the radius of the pipe and u the kinematic viscosity), which we now call the 
Reynolds number Re. He found that in his experimental set-up the critical 
Reynolds number was about 13 000. But Reynolds did not succeed in an attempt 
(1895) to predict this value theoretically. Theoretical work in this field started 
again with Sex1 (1927a) b ) ,  who found no evidence of instability of Hagen- 
Poiseuille flow (HPF) to small two-dimensional (axisymmetric) disturbances. His 
results were supported and extended to infinite Reynolds number by many other 
authors, e.g. Mott & Joseph (1968), Davey & Drazin (1969) and Crowder & 
Dalton (1971). Subsequently the stability of Poiseuille pipe flow to small three- 
dimensional disturbances was examined too. Lessen, Sadler & Liu (1968) found 
no amplification of such disturbances up to a Reynolds number of 16000, by 
numerical solution of the perturbation equations. Salwen & Grosch (1972) con- 
firmed the results of Lessen et al. and extended the calculations up to a Reynolds 
number of 50 000. The most recent work on this subject (Gill 1973) made it clear 
that even the least damped perturbation mode has a finite decay rate for any 
Reynolds number, however large. 

Thus, from the theoretical point of view, HPF appears to be stable against all 
kinds of infinitesimal perturbations a t  all Reynolds numbers, whereas in many 
experiments spontaneous transition from laminar to turbulent pipe flow has been 
observed at  Reynolds numbers between 2300 and nearly 50 000 (see, for example, 
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Reshotko 1958; Bhat 1966). The usual interpretation is that HPF is stable against 
infinitesimal disturbances but unstable to perturbations of finite amplitude 
(Leite 1959). Considering the extremely sophisticated experimental set-ups used 
by investigators, the most likely sources of perturbations which could have 
influenced the flow are disturbances to the fluid in the feeding tank. This assump- 
tion is strongly supported by the results of Schiller (1922), who stated that the 
critical Reynolds number increases as the time for which the fluid is allowed to 
settle in the feeding tank increases. However the motion in the feeding tank 
which remains after a long settling time can be only a very slow rotation, thus 
superimposing an azimuthal velocity V upon the Hagen-Poiseuille flow. Further- 
more, from the results of Ludwieg (1960, 1961,1964), Kiessling (1963), Mackrodt 
(1967) and Wedemeyer (1967, 1969) it is well known that a slight rotation super- 
imposed on the axial velocity destabilizes the flow in a cylindrical annulus. 
Pedley (1968,1969) and Joseph & Carmi (1969) found independently that a very 
rapidly rotating flow in a pipe becomes unstable at Re = 82.9. These results have 
been confirmed experimentally by Nagib et al. (1971) and theoretically by Strohl 
(1969), Hung, Joseph & Munson (1972), and Metcalfe & Orszag (1973). 

These findings suggest that linear rather than finite amplitude instability, asso- 
ciated with an undetected, slow rotation superimposed on HPF, could be respon- 
sible for its apparent spontaneous transition. Actually this remaining rotation 
cannot be rigid, both because of friction near the tube wall and, more important, 
because of the radial variation in vortex stretching that would occur even in an 
inviscid inlet flow. However there is reason to expect that the. qualit,ative 
character of the results would persist with more realistic profiles; see the 
discussion in Q 4 below. 

2. Derivation of the perturbation equations 
2.1. Pinite axial Reynolds number 

We consider a fully developed laminar flow in a rotating pipe. After a certain 
inlet length the fluid rotates rigidly with the same angular velocity w as the 
pipe. The parabolic Poiseuille profile of the axial flow remains uninfluenced. 
In  cylindrical polar co-ordinates ( r ,  4 ,z )  this flow has velocity components 
(0, wr, W,( 1 - rz/Xz),>, and the pressure is ipw2r2. Upon the basic flow are super- 
imposed small disturbances (&, 8 , 8 ,  #) of the form 

&(r, 4, z, t )  = u ( r )  exp [ i ( az  +yq5 -/3t)] etc.? (2.1) 

The axial wavenumber a is taken as real, the azimuthal wavenumber y as an 
integer, and the frequency /3 in general as complex; thus we look a t  disturbances 
which increase or decrease with time t .  To render all expressions and equations 
dimensionless the following transformation is introduced: 

x = r /R ,  (2.2) 

t We look at three-dimensional disturbances only, because from the work of Ludwieg 
(1960, 1961) it is well known that in spiral flows, as examined here, such disturbances are 
more unstable than axisymmetric perturbations. 
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(q4, W) ,  @@)} = (x/&) (u, 21, w}, (2.3) 

H X )  = PlPW& (2.4) 

(2.51, (2.6) 

Re, = V, Rlv, Re, = W, R/v (2.7), (2.8) 

- 
tl. = aR, c = P/aW,, 

(V, = wR is the azimuthal speed of the pipe wall). The velocity components of the 
basic flow are now written as (0, q x ,  W,( 1 - x2)}. After substitutingthe disturb- 
ances (2.1) into the Navier-Stokes equations and the continuity equation and 
linearizing we obtain a system of four linear, homogeneous, ordinary 
differential equations, which are written [in the notation of (2.2)-(2.8)] as 

(2.10) 

(2.1 1) 

.ii'+iyv"/x+iZ6 = 0 (2.12) 

(primes denote differentiation with respect to x) .  

conditions. At the wall, these are zero velocity for all three components: 
The solutions of these differential equations have to satisfy seven boundary 

G(1) = Z(1) = G(1) = 0. (2.13) 

At the axis of the pipe, x = 0, the solutions are required to be non-singular: the 
components ti and 0 have to be free of sources and concentrated vorticity, while 
the disturbances and fi must be single-valued, which for y + 0 is possible only 
if the amplitude functions w and p vanish, and thus 

C(0) = v"(0) = G(0) = P(0) = 0 (2.14) 

[note the factor x in (2.3)]. The development of the perturbation equations and 
the formulation of the boundary conditions has been outlined in more detail by 
the author (1971). 

2.2. InJinite axial Reynolds numbers 
To go to the limit Re, -+ co in (2.9)-(2.12) one needs further information. From the 
numerical solutions of this system (see $3.1) it was found that, for large values of 
Re,, the axial wavenumber a decreases with increasing Re, on the stability 
boundary in such a manner that the product ZRe, = 2 remains constant 
(figure 1). That means that the limiting processes Re,+co and o l + O  must be 
carried out simultaneously. Furthermore we assume the existence of finite 
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Re, 
FIGURE 1. Variation of axial wavenumber B with Re,. 

limiting values P = pit and 
tions the perturbation equations (2.9)-(2.12) become 

= ZG for Re,+ m with t-t 0. With these assump- 

4"- - -G[$+ iR(1 -x2-c )+ iyRe l  Gr -@'x = 0, (2.15) 
X 

5"- - -5 [$+ iR(1 -x2-c )+ iyRe6  v"' -iyBP = 0,  (2.16) 
X 

+2GRx = 0 ,  (2.17) 
X 1 

Gt+iy5/x+iW = 0. (2.18) 

The boundary conditions (2.13) and (2.14) remain unchanged and are written 
(using the new variables P and m) as 

and 

u"(1) = v"(1) = W(1) = 0 

G(0)  = V"(0) = W ( 0 )  = P(0)  = 0. 

(3.19) 

(2.20) 

A more detailed development of the perturbation equations in the case Re, -+a 
has been given by the author (1973). 
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FIGURE 2. Neutral curves for (a) different Z at y = - 1 (With envelope) 

(a) different y at B = I. 
and 

3. Solution of the perturbation equations 
3.1. Finite axial Reynolds numbers 

The differential equations (2.9)-(2.12) were solved numerically by means of the 
Runge-Kutta method. To this end the functions B,  5, .L?r and were initially 
represented at x = 0 by expansions in powers of x which satisfy the boundary 
conditions a t  x = 0. To start the numerical procedure it was further convenient 
to have an initial approximation to the eigenvalue c. To this end solutions of the 
perturbation equations were sought for the limits Re, -+ 0 and Re,+ 0 simul- 
taneously. The perturbation equations then took a form for which analytical 
solutions (expressible in terms of cylinder functions) could be obtained. With 
these starting values of c the solutions for finite Re, at Re+ = 0, i.e. for Hagen- 
Poiseuille flow, were computed. For this special case solutions have already been 
found by Lessen et al. (1968). Thus i t  was possible to check our computer pro- 
grams by comparison of the results with those of Lessen et d .  For example, they 
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found, a t  Re, = 200 and Ol = y = 1, 

the author’s result is 

As a next step the eigenvalues were calculated starting from Re4 = 0 and pro- 
ceeding with Re, = constant to increasingly higher azimuthal Reynolds numbers 
Re,. Guided by the results obtained previously by Ludwieg (1960, 1961), 
Wedemeyer (1969) and Hung et al. (1972) for the stability of helical flow in a small 
annulus, by Pedley (1969, appendix) for a rapidly rotating pipe and by Lessen & 
Paillet ( 1974) for an unbounded swirling jet, we assumed that disturbances 
in the pipe would be found only for negative azimuthal wavenumbers y .  (See also 
$4 below.) Accordingly neutral curves (curves on which Im ( c )  vanishes) were 
obtained for various E (figure 2 a)  and various negative y (figure 2 b) .  The envelope 
of all these curves represents the overall stability boundary, on the assumption 
that all relevant modes have been considered. For larger axial and azimuthal 
Reynolds numbers this stability boundary was determined in two steps: in the 
fist step the most unstable mode for fixed y was evaluated as a function of Ol and 

c = 0.645 - 0.129i; 

c = 0.64526 - 0.12921i. 
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FIGURE 4. Neutral curves in the case Re, -+ CQ at y = - 1 and y = -2. 

in the second step the point (Re,, Re,) for which Im (c) vanishes was determined. 
In  this way the neutral curves were calculated up to Re, = 100000 for y = - 1 
and y = - 2 (figure 3), up to Re, = 10 000 for y = - 1 and up to Re, = 2000 for 
y =  -2. 

3.2. Infinite axial Reynolds number 
The solution of (2.9)-(2.12) shows that, for sufficiently large axial Reynolds 
numbers (Re, 2 4000), the product fl = ERe, remains constant on the neutral 
curve (2 = 106.6 for y = - 1 and fl = 165.4 for y = - 2; see figure 1) and the 
eigenvalue c is independent of Re,. Thus this eigenvalue is a suitable starting 
value for the numerical solution of (2.15)-(2.18), which was achieved in a similar 
manner to that described in $3.1. Figure 4 shows the curves 2 us. Re, on which 
Im (c) vanishes for y = - 1 and y = - 2. 

4. Results and discussion 
The results of the calculations show that unstable modes do indeed exist if a 

finite rigid rotation is superimposed on Hagen-Poiseuille flow. From figures 2 (b)  
and 3 it  is apparent that the most unstable disturbances are those with y = - 1. 
At y = - 1 there exists one neutral curve for each axial wavenumber B (figure 2a). 
The envelope of all these curves, the overall neutral curve, matches for sufficiently 
high azimuthal Reynolds numbers (Re, 2 4000) the line 

Re, = 82.88, 

which is exactly the value found by Pedley (1969) and Joseph & Carmi (1969) in 
the case Re, + co. As the axial Reynolds number Re, tends to infinity, the stability 
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FIGURE 6. (a) Real and (a) imaginary parts of typical eigenfunctions at 
Re, = 100 000 and Recb = 27 with Z = 0.001075 and y = - 1. 

boundary seems to approach an analogous limiting value. The solution of the 
differential equations (2.15)-(2.18) shows (figure 4) that these limiting values are 

Re, = 26.96 at a = 106.6 for y = - 1 

and Re, = 43.47 at 2 = 165.4 for y = - 2 .  

The existence of the finite Re, values is consistent with the accepted view that 
Hagen-Poiseuille flow (Re, = 0) is linearly stable against small three-dimensional 
disturbances a t  all axial Reynolds numbers. An exampIe of typical unstable 
eigenfunctions (at Re, = 100 000 and Re, = 27) is shown in figures 5 (a) and (b ) .  

Furthermore the above results tend to support the conjecture, made in $ 1  
above, that linear instability may, nevertheless, play an initial role in experi- 
ments on the transition to turbulence of HPF a t  very high (axial) Reynolds 
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FIUURE 6. Schematic diagram of experimental set-up (dimensions in mm). 

numbers. Although the present results cannot be applied quantitatively, it 
appears from an argument due to McIntyre (see Pedley 1969, appendix) that the 
physical mechanism of the instability is likely to be insensitive to the precise form 
of the axial and azimuthal velocity profiles, as long as there is some axial shear 
and some rotation. (This is in contrast to classical shear instabilities, and is 
because the present instabilities are physically more like Taylor vortices, when 
viewed in an appropriate co-ordinate system. The argument suggests, incident- 
ally, why negative values of y should dominate the instability properties as soon 
as there is some rotation.) 

It should of course be realized that, although the neutral curves give sufficient 
conditions for the onset of instabilities, they need not correspond to the transition 
to  turbulence. At low Re, the amplification rate of the unstable disturbances is 
low and their increase with growing Re, would probably lead to another stable 
flow (again by analogy to Taylor vortices) rather than to turbulence. Only at very 
high Reynolds numbers may the neutral curve and the transition boundary be 

I1 F L M  73 
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expected to coincide. And, indeed, findings of experimenters seem to point in this 
direction. Bhat (1966) maintained laminar flow up to Re, = 40 000. At this axial 
Reynolds number a superimposed rotational velocity with an azimuthal 
Reynolds number of about 27 would be sufficient to initiate instability. Obviously 
such an extremely small azimuthal velocity, involving streamline directions only 
0.04" off axial, could well remain undetected unless one were to look for it. 

5. Comparison of the calculated neutral curve with experiment 
In  order to check the results of the numerical calculations a few simple experi- 

ments were performed. The apparatus used is shown in figure 6. The fluid flows 
from the tank (1) through a properly finished inlet ( 2 )  into a pipe ( 3 )  which is 
being rotated by means of an adjustable-speed electric motor ( M ) .  After a certain 
distance from the inlet the fluid rotates rigidly with the pipe. 

It was shown by Christiansen & Lemmon (1965) and Sparrow, Lin & Lundgren 
(1964) that HPF is fully developed after a running length 1 given by 

ZIR = 0.ll3ReZ. (5.1) 

The development of the rigid rotation follows essentially the same law as that of 
HPF (at least for Re, 2 Re,; cf. Pedley 1969, equation (6.5)), so we can expect the 
basic flow to be fully developed after the length 1 .  Thus, for Re, < 400 and 
Re, < 400 the basic flow is established after about one quarter of the pipe length 
(see figure 6). The fluid was glycerine because of the ease of adjusting its viscosity 
by heating or cooling. With the viscosity constant (that is, a t  constant axial 
Reynolds number Re,), the spin rate of the pipe (and thus the azimuthal 
Reynolds number Re+) was gradually increased until the fist disturbance 
vortices appeared in the glass part immediately upstream of the pipe orifice 
(figure 6), or, conversely, Re, was decreased until the vortices disappeared. (In 
this part of the pipe disturbances from the inlet cannot be expected as was shown 
by Tatsumi 1952.) The first appearance of disturbances was interpreted as the 
onset of instability. The results of these experiments are depicted in figure 3 as 
small circles. The agreement with the theoretical curve for y = - 1 is quite good. 
To confirm the right branch of the curve the method described above was not 
applicable because the axial Reynolds number Re, could be varied only by 
altering the viscosity of the fluid. This causes some variation in the azimuthal 
Reynolds number Re4 too. Therefore the transition from stable to unstable flow 
was slow and observation of the occurrence of disturbance vortices did not yield 
reproducible data. For this reason an attempt was made to confirm the results 
by measuring the flow drag in the pipe. The drag must increase on the occurrence 
of instabilities. The results show a little more scatter, probably because this 
method is less sensitive. 

A further verification of the stability boundary is obtained by observation of 
the spiral angles of the disturbance vortices. The spiral angle Y a t  the wall is 
given by 

1 dz y 
C O t Y  = -- = -=* 

Rd$ a 
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At Re, = 200 the most unstabIe mode has axial wavenumber iii = 0-5 (and 
y = - 1). This leads to 

The spiral angles observed in the unstable flow a t  Re, = 200 and Re, M 70 range 
from cot Yr = 1.92 to cot Y = 2.2, which agrees very well with the theoretical 
value. 

cot Y? = 2. (5.3) 
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